4.3 Review

Biomaterials and scaffold design: key to tissue-engineering cartilage

Journal

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY
Volume 46, Issue -, Pages 73-84

Publisher

WILEY
DOI: 10.1042/BA20060134

Keywords

cartilage; natural and synthetic scaffold polymers; scaffold degradation; scaffold fabrication; scaffold pore size; tissue engineering

Ask authors/readers for more resources

Cartilage remains one of the most challenging tissues to reconstruct or replace, owing to its complex geometry in facial structures and mechanical strength at articular surfaces in joints. This non-vascular tissue has poor replicative capacity and damage results in its functionally inferior repair tissue, fibrocartilage. This has led to a drive for advancements in tissue engineering. The variety of polymers and fabrication techniques available continues to expand. Pore size, porosity, biocompatibility, shape specificity, integration with native tissue, degradation tailored to rate of neocartilage formation and cost efficiency are important factors which need consideration in the development of a scaffold. The present review considers the current polymers and fabrication methodologies used in scaffold engineering for cartilage and postulates whether we are closer to developing the ideal scaffold for clinical application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available