4.7 Article

An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCSI.2006.887472

Keywords

adaptive on time; dc-dc converter; integrated power supply; pulse-frequency modulation (PFM) control

Ask authors/readers for more resources

Integrated switching power supplies with multimode control are gaining popularity in state-of-the-art portable applications like cellular phones, personal digital assistants (PDAs), etc., because of their ability to adapt to various loading conditions and therefore achieve high efficiency over a wide load-current range, which is critical for extended battery life. Constant-frequency, pulsewidth modulated (PWM) switching converters, for instance, have poor light-load efficiencies because of higher switching losses While pulse-frequency modulation (PFM) control in discontinuous-conduction mode (DCM) is more efficient at light loads because the switching frequency and associated switching losses are scaled down with load current. This paper presents the design and integrated circuit prototype results of an 83% power efficient 0.5-V 50-mA CMOS PFM buck (step-down) dc-dc converter with a novel adaptive on-time scheme that generates a 27-mV output ripple voltage from a 1.4- to 4.2-V input supply (battery-compatible range). The output ripple voltage variation and steady-state accuracy of the proposed supply was 5 mV (22-27 mV) and 0.6% whereas its constant on-time counterpart was 45 mV (10-55 mV) and 3.6%, respectively. The proposed control scheme provides an accurate power supply while achieving 2%-10% higher power efficiency than conventional fixed on-time schemes with little circuit complexity added, which is critical during light-loading conditions, where quiescent current plays a pivotal role in determining efficiency and battery-life performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available