4.6 Article

Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa)

Journal

ANNALS OF BOTANY
Volume 99, Issue 2, Pages 275-284

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcl254

Keywords

Medicago sativa; elevated CO2; freezing tolerance; Sinorhizobium meliloti; rhizobial strains; cold-regulated genes; vegetative storage proteins; carbohydrates

Categories

Ask authors/readers for more resources

Background and Aims The objective of the study was to assess the impact of elevated CO2 in interaction with rhizobial strains on freezing tolerance and cold-induced molecular changes in alfalfa. Methods Alfalfa inoculated with two different strains of rhizobium (A2 and NRG34) was grown and cold acclimated (2 weeks at 2 degrees C) under either 400 (ambient) or 800 mu mol mol(-1) (elevated) CO2. Key Results Plants acclimated under 400 mu mol mol(-1) CO2 were more freezing tolerant than those maintained under 800 mu mol mol(-1.) Cryoprotective sugars typically linked with the acquisition of freezing tolerance such as sucrose, stachyose and raffinose increased in roots in response to low temperature but did not differ between CO2 treatments. Similarly high CO2 did not alter the expression of many cold-regulated (COR) genes although it significantly increased the level of transcripts encoding a COR gene homologous to glyceraldehyde-3-phosphatedehydrogenase (GAPDH). A significant effect of rhizobial strain was observed on both freezing tolerance and gene expression. Plants of alfalfa inoculated with strain A2 were more freezing tolerant than those inoculated with strain NRG34. Transcripts of COR genes homologous to a pathogenesis-related protein (PR-10) and to a nuclear-targeted protein were markedly enhanced in roots of alfalfa inoculated with strain A2 as compared with strain NRG34. Transcripts encoding the vegetative storage proteins (VSPs) beta-amylase and chitinase were more abundant in roots of non-acclimated plants inoculated with strain NRG34 than with strain A2. Conclusions Taken together, the results suggest that elevated CO2 stimulates plant growth and reduces freezing tolerance. The acquisition of cold tolerance is also influenced by the rhizobial strain, as indicated by lower levels of expression of COR genes and sustained accumulation of VSP-encoding transcripts in alfalfa inoculated with strain NRG34 as compared with strain A2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available