4.8 Article

The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid:UDPG glucosyltransferase

Journal

PLANT JOURNAL
Volume 49, Issue 4, Pages 655-668

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2006.02984.x

Keywords

Arabidopsis; glucosyltransferase; sinapic acid; sinapate ester; trichome; polyketide; At3g21560

Categories

Ask authors/readers for more resources

Sinapoylmalate is a major phenylpropanoid that is accumulated in Arabidopsis. Its presence causes the adaxial surface of leaves to fluoresce blue under UV light, and mutations that lead to lower levels of sinapoylmalate decrease UV-induced leaf fluorescence. The Arabidopsis bright trichomes 1 (brt1) mutant was first identified in a screen for mutants that exhibit a reduced epidermal fluorescence phenotype; however, subsequent examination of the mutant revealed that its trichomes are hyper-fluorescent. The results from genetic mapping and complementation analyses showed that BRT1 (At3g21560) encodes UGT84A2, a glucosyltransferase previously shown to be capable of using sinapic acid as a substrate. Residual levels of sinapoylmalate and sinapic acid:UDP-glucose glucosyltransferase activity in brt1 leaves suggest that BRT1 is one member of a family of partially redundant glycosyltransferases that function in Arabidopsis sinapate ester biosynthesis. RT-PCR analysis showed that BRT1 is expressed through all stages of plant life cycle, a result consistent with the impact of the brt1 mutation on both leaf sinapoylmalate levels and seed sinapoylcholine content. Finally, the compound accumulated in brt1 trichomes was identified as a sinapic acid-derived polyketide, indicating that when sinapic acid glycosylation is reduced, a portion of it is instead activated to its CoA thioester, which then serves as a substrate for chalcone synthase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available