4.5 Article

Improving the nutritive value of tubers:: Elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 128, Issue 2, Pages 335-343

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2006.10.015

Keywords

cysteine; glutathione; metabolite analysis; serine acetyltransferase; Solanum tuberosum; transgenic plants

Ask authors/readers for more resources

The amino acids that limit the nutritive value of potato are the sulfur containing amino acids methionine and cysteine. Manipulation of the targeted amino acid biosynthesis is a way to circumvent this problem. Cysteine is synthesised from O-acetyl-L-serine formed by serine acetyltransferase (SAT). To increase the cysteine content of the commercial potato cultivar White Lady the chimeric SAT-coding cysE gene from Escherichia coli under the control of the constitutive CaMV 35S promoter and fused to the chloroplast targeting rbcS 5'-transit peptide sequence was introduced into the White Lady genome. Novelty of the approach was the application of marker-free transformation. Two transgenic lines were obtained that accumulated the cysE mRNA in high amounts. Crude leaf extracts of these plants exhibited up to 80- and 20-fold higher SAT activity in leaves and tubers, respectively, than those prepared from non-transformed plants. Levels of cysteine and glutathione both in leaves and tubers were 1.5-fold higher in average than in control plants. The alterations observed had no effect on tuber yield and sprouting behaviour. Gas chromatography coupled to mass spectrometry showed that all other amino acids than cysteine were unaffected. Here we demonstrate for the first time that the cysteine content of tubers can be enhanced by metabolic engineering. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available