4.8 Article

Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values**

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction

Dehui Deng et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2013)

Article Chemistry, Multidisciplinary

Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution

Junfeng Xie et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Chemistry, Multidisciplinary

Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction

Eric J. Popczun et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Chemistry, Multidisciplinary

Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets

Mark A. Lukowski et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Chemistry, Multidisciplinary

Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water

Yujie Sun et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Chemistry, Multidisciplinary

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

Charles C. L. McCrory et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Multidisciplinary Sciences

Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis

Rodney D. L. Smith et al.

SCIENCE (2013)

Article Multidisciplinary Sciences

Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction

Hoon T. Chung et al.

NATURE COMMUNICATIONS (2013)

Article Chemistry, Physical

Ni-Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution

James R. McKone et al.

ACS CATALYSIS (2013)

Article Chemistry, Multidisciplinary

Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets

Wei-Fu Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2012)

Article Chemistry, Multidisciplinary

Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions

Heron Vrubel et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2012)

Article Chemistry, Multidisciplinary

Hydrogen evolution catalyzed by MoS3 and MoS2 particles

Heron Vrubel et al.

ENERGY & ENVIRONMENTAL SCIENCE (2012)

Article Chemistry, Multidisciplinary

Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution

Anders B. Laursen et al.

ENERGY & ENVIRONMENTAL SCIENCE (2012)

Article Chemistry, Physical

A Janus cobalt-based catalytic material for electro-splitting of water

Saioa Cobo et al.

NATURE MATERIALS (2012)

Review Chemistry, Multidisciplinary

Splitting Water with Cobalt

Vincent Artero et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2011)

Article Chemistry, Multidisciplinary

MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction

Yanguang Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2011)

Article Chemistry, Multidisciplinary

Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water

Daniel Merki et al.

CHEMICAL SCIENCE (2011)

Review Chemistry, Multidisciplinary

Solar Energy Supply and Storage for the Legacy and Non legacy Worlds

Timothy R. Cook et al.

CHEMICAL REVIEWS (2010)

Article Chemistry, Multidisciplinary

Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction

Dingshan Yu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2010)

Article Chemistry, Multidisciplinary

Mesoporous, 2D Hexagonal Carbon Nitride and Titanium Nitride/Carbon Composites

Young-Si Jun et al.

ADVANCED MATERIALS (2009)

Article Chemistry, Physical

Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts

Thomas F. Jaramillo et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2008)

Article Multidisciplinary Sciences

Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts

Thomas F. Jaramillo et al.

SCIENCE (2007)

Article Chemistry, Multidisciplinary

Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution

B Hinnemann et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2005)

Article Chemistry, Physical

Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines

NS Kim et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2003)