4.2 Article Proceedings Paper

Molecular genetics of plant sterol backbone synthesis

Journal

LIPIDS
Volume 42, Issue 1, Pages 47-54

Publisher

AMER OIL CHEMISTS SOC A O C S PRESS
DOI: 10.1007/s11745-006-1000-5

Keywords

sterol; Arabidopsis; HMG-CoA reductase; farnesyl diphosphate synthase; oxidosqualene cyclase; lanosterol; cycloartenol; phytosterol; gene knockout; isoprenoid

Ask authors/readers for more resources

Sterols, which are biosynthesized via the cytoplasmic mevalonate (MVA) pathway, are important structural components of the plasma membrane and precursors of steroid hormones in both vertebrates and plants. Ergosterol and cholesterol are the major sterols in yeast and vertebrates, respectively. In contrast, plants produce a wide variety of phytosterols, which have various functions in plant development. Although the general biosynthetic pathway to plant sterols has been defined, the details of the biochemical, physiological, and developmental functions of genes involved in the biosynthetic network and their regulation are not well understood. Molecular genetic analyses are an effective approach to use when studying these fascinating problems. Since three enzymes, 3-hydroxy3-methylglutaryl CoA reductase, farnesyl diphosphate synthase, and lanosterol synthase, have been functionally characterized in planta, we reviewed recent progress on these enzymes. Arabidopsis T-DNA and transposon insertion mutants are now widely available. The use of molecular genetics, molecular biology, and bioorganic chemical approaches on these mutants, as well as inhibitors of the MVA pathway, should help us to understand plant sterol biosynthesis comprehensively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available