4.7 Article

Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells

Journal

DIABETOLOGIA
Volume 50, Issue 2, Pages 370-379

Publisher

SPRINGER
DOI: 10.1007/s00125-006-0511-1

Keywords

calcium signalling; glucagon; insulin secretion; signal transduction; somatostatin (SRIF)

Ask authors/readers for more resources

Aims/hypothesis The mechanisms by which glucose regulates glucagon release are poorly understood. The present study aimed to clarify the direct effects of glucose on the glucagon-releasing alpha cells and those effects mediated by paracrine islet factors. Materials and methods Glucagon, insulin and somatostatin release were measured from incubated mouse pancreatic islets and the cytoplasmic Ca2+ concentration ([Ca2+](i)) recorded in isolated mouse alpha cells. Results Glucose inhibited glucagon release with maximal effect at 7 mmol/l. Since this concentration corresponded to threshold stimulation of insulin secretion, it is unlikely that inhibition of glucagon secretion is mediated by beta cell factors. Although somatostatin secretion data seemed consistent with a role of this hormone in glucose-inhibited glucagon release, a somatostatin receptor type 2 antagonist stimulated glucagon release without diminishing the inhibitory effect of glucose. In islets exposed to tolbutamide plus 8 mmol/l K+, glucose inhibited glucagon secretion without stimulating the release of insulin and somatostatin, indicating a direct inhibitory effect on the alpha cells that was independent of ATP-sensitive K+ channels. lucose lowered [Ca2+](i) of individual alpha cells independently of somatostatin and beta cell factors (insulin, Zn2+ and gamma-aminobutyric acid). Glucose suppression of glucagon release was prevented by inhibitors of the sarco(endo)plasmic reticulum Ca2+-ATPase, which abolished the [Ca2+](i)-lowering effect of glucose on isolated alpha cells. Conclusions/interpretation Beta cell factors or somatostatin do not seem to mediate glucose inhibition of glucagon secretion. We instead propose that glucose has a direct inhibitory effect on mouse alpha cells by suppressing a depolarising Ca2+ store-operated current.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available