4.4 Article

Enhanced in-vitro blood compatibility of 316L stainless steel surfaces by reactive landing of hyaluronan ions

Publisher

WILEY
DOI: 10.1002/jbm.b.30624

Keywords

reactive landing; sodium hyaluronan; haemocompatibility; surface immobilization; surface plasma treatment

Ask authors/readers for more resources

A novel dry process for immobilization of hyaluronan on stainless steel surfaces is presented. This process that we call reactive landing is based on an interaction of hyperthermal gas-phase hyaluronan ions with plasma-cleaned and activated stainless steel surfaces. Reactive landing is performed on a unique instrument that combines an in-situ plasma reactor with an electrospray ion source and ion transfer optics. Gas-phase hyaluronan anions are obtained by electrospray ionization of sodium hyaluronan solutions and immobilized by reactive landing on large-area stainless steel surfaces. The immobilized hyaluronan withstands extensive washing with polar solvents and solutions, and the washed surfaces maintain the protective properties against blood platelet activation. The mechanism of hyaluronan discharge and immobilization is discussed. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available