4.6 Article

Electronic structure of bilayer graphene: A real-space Green's function study

Journal

PHYSICAL REVIEW B
Volume 75, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.085424

Keywords

-

Ask authors/readers for more resources

In this paper, a real-space analytical expression for the free Green's function (propagator) of bilayer graphene is derived based on the effective-mass approximation. Green's function displays highly spatial anisotropy with threefold rotational symmetry. The calculated local density of states (LDOS) of a perfect bilayer graphene produces the main features of the observed scanning tunneling microscopy (STM) images of graphite at low bias voltage. Some predicted features of the LDOS can be verified by STM measurements. In addition, we also calculate the LDOS of bilayer graphene with vacancies by using the multiple-scattering theory (scatterings are localized around the vacancy of bilayer graphene). We observe that the interference patterns are determined mainly by the intrinsic properties of the propagator and the symmetry of the vacancies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available