4.4 Article

Modification of the structure of peptidoglycan is a strategy to avoid detection by nucleotide-binding oligomerization domain protein 1

Journal

INFECTION AND IMMUNITY
Volume 75, Issue 2, Pages 706-713

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.01597-06

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM065248, GM065248] Funding Source: Medline

Ask authors/readers for more resources

Nucleotide-binding oligomerization domain (NOD) protein 1 (NOD1) and NOD2 are pathogen recognition receptors that sense breakdown products of peptidoglycan (PGN) (muropeptides). It is shown that a number of these muropeptides can induce tumor necrosis factor alpha (TNF-alpha) gene expression without significant TNF-alpha translation. This translation block is lifted when the muropeptides are coincubated with lipopolysaccharide (LPS), thereby accounting for an apparently synergistic effect of the muropeptides with LPS on TNF-alpha protein production. The compounds that induced synergistic effects were also able to activate NF-KB in a NOD1- or NOD2-dependent manner, implicating these proteins in synergistic TNF-alpha secretion. It was found that a diaminopimelic acid (DAP)-containing muramyl tetrapeptide could activate NF-KB in a NODI-dependent manner, demonstrating that an exposed DAP is not essential for NODI sensing. The activity was lost when the alpha-carboxylic acid of iso-glutamic acid was modified as an amide. However, agonists of NOD2, such as muramyl dipeptide and lysine-containing muramyl tripeptides, were not affected by amidation of the alpha-carboxylic acid of iso-glutamic acid. Many pathogens modify the alpha-carboxylic acid of iso-glutamic acid of PGN, and thus it appears this is a strategy to avoid recognition by the host innate immune system. This type of immune evasion is in particular relevant for NOD1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available