4.4 Article

Exophilin4/Slp2-a targets glucagon granules to the plasma membrane through unique Ca2+-inhibitory phospholipid-binding activity of the C2A domain

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 18, Issue 2, Pages 688-696

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E06-10-0914

Keywords

-

Categories

Ask authors/readers for more resources

Rab27a and Rab27b have recently been recognized to play versatile roles in regulating the exocytosis of secretory granules and lysosome-related organelles by using multiple effector proteins. However, the precise roles of these effector proteins in particular cell types largely remain uncharacterized, except for those in pancreatic beta cells and in melanocytes. Here, we showed that one of the Rab27a/b effectors, exophilin4/Slp2-a, is specifically expressed in pancreatic alpha cells, in contrast to another effector, granuphilin, in beta cells. Like granuphilin toward insulin granules, exophilin4 promotes the targeting of glucagon granules to the plasma membrane. Although the interaction of granuphilin with syntaxin-1a is critical for the targeting activity, exophilin4 does this primarily through the affinity of its C2A domain toward the plasma membrane phospholipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate. Notably, the binding activity to phosphatidylserine is inhibited by a physiological range of the Ca2+ concentration attained after secretagogue stimulation, which presents a striking contrast to the Ca2+-stimulatory activity of the C2A domain of synaptotagmin I. Analyses of the mutant suggested that this novel Ca2+-inhibitory phospholipid-binding activity not only mediates docking but also modulates the subsequent fusion of the secretory granules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available