4.5 Article

In-frame overlapping genes: The challenges for regulating gene expression

Journal

MOLECULAR MICROBIOLOGY
Volume 63, Issue 4, Pages 1158-1172

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2958.2006.05572.x

Keywords

-

Funding

  1. NIGMS NIH HHS [GM33349] Funding Source: Medline

Ask authors/readers for more resources

In-frame overlapping genes in phage, plasmid and bacterial genomes permit synthesis of more than one form of protein from the same gene. Having one gene entirely within another rather than two separate genes presumably precludes recombination events between the identical sequences. However, studies of such gene pairs indicate that the overlapping arrangement can make regulation of the genes more difficult. Here, we extend studies of in-frame overlapping genes II and X from filamentous phage f1 to determine if translational controls are required to regulate the gene properly. These genes encode proteins (pII and pX) with essential but opposing roles in phage DNA replication. They must be tightly regulated to maintain production of the proteins at relative steady state levels that permit continuous replication without killing the host. To determine why little or no pX appears to be made on the gene II/X mRNA, gene II translation was lowered by progressively deleting into the gene II initiator region. Increased pX translation resulted, suggesting that elongating ribosomes on the gene II mRNA interfere with internal initiation on the gene X ribosome binding site and limit gene X translation. As judged from systematically lowering the efficiency of suppression at a gene II amber codon upstream from the gene X start, the already modest level of gene II translation would have to be reduced by more than twofold to relieve all interference with internal initiation. Further downregulation of gene X expression proved to be required to maintain pX at levels relative to pII that are tolerated by the cell. Site-directed mutagenesis and nuclease mapping revealed that the gene X initiation site is sequestered in an extended RNA secondary structure that lowers gene X translation on the two mRNAs encoding it. The more general implications of the results for expression of in-frame overlapping genes are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available