4.7 Article

The coiled-coil structure potential of the laminin LCC domain is very fragmented and does not differentiate between natural and non-detected isoforms

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 24, Issue 4, Pages 413-420

Publisher

ADENINE PRESS
DOI: 10.1080/07391102.2007.10507129

Keywords

laminin structure; coiled-coil; and laminin isoforms

Ask authors/readers for more resources

There are 15 known laminins, which differ in the isoforms of the three chains that assemble into the cross-shape molecules that are observed by electron microscopy. The amino acid sequences of the rod-like portion of the long arm have long been recognized as having a potential for coiled-coil structure formation; however, an experimental determination of its structure is hampered by the complexity of laminin, a multidomain, heterotrimeric, and glycosilated 800 kDa molecule. Here, we have investigated the coiled-coil structure potential of laminin to evaluate its distribution along the long arm, the presence of conserved patterns, and differences between natural and non-natural isoforms. With these aims, we have analysed the sequences of each laminin chain in the context of the three-chain assemblies to yield an overall score of coiled-coil potential for the 15 natural laminins and for the other 30 possible but non-detected ones. The potential has been calculated with two different existing methods to exclude algorithm specific biases and with different chain alignments to evaluate the dependency of the results on uncertainties in the specific alignment along the domain. The analysis shows that the distribution of the potential is discontinuous, highly fragmented along the arm, without a common pattern except for a higher potential at the C-terminus, and that natural and non-natural laminins cannot be distinguished based on their coiled-coil potential, indicating that other factors are responsible for the selection of chain assembly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available