4.7 Article

High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells

Journal

CIRCULATION RESEARCH
Volume 100, Issue 2, Pages 204-212

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000257774.55970.f4

Keywords

high-mobility group box 1; endothelial progenitor cells; homing; integrins; migration

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Endothelial progenitor cells (EPCs) are recruited to ischemic regions and improve neovascularization. Integrins contribute to EPC homing. High-mobility group box 1 (HMGB1) is a nuclear protein that is released extracellularly on cell necrosis and tissue damage, eliciting a proinflammatory response and stimulating tissue repair. In the present study, we investigated the effects of HMGB1 on EPC homing. EPCs express the HMGB1 receptors RAGE ( receptor for advanced glycation end products) and TLR2 (Toll-like receptor 2). EPC migration was stimulated by HMGB1 in a RAGE-dependent manner. In addition, the HMGB1-induced migration of EPCs on fibronectin and fibrinogen was significantly inhibited by antibodies against beta(1) and beta(2) integrins, respectively. Short-term prestimulation of EPCs with HMGB1 also increased EPC adhesion to endothelial cell monolayers, and this effect was blocked by antibodies to beta(2) integrins or RAGE. HMGB1 increased EPC adhesion to the immobilized integrin ligands intercellular adhesion molecule-1 and fibronectin in a RAGE-dependent manner. Strikingly, HMGB1 rapidly increased integrin affinity and induced integrin polarization. Using intravital microscopy in a tumor model of neovascularization, prestimulation of EPCs with HMGB1 enhanced the initial in vivo adhesion of EPCs to microvessels and the recruitment of EPCs in the tumor tissue. In addition, prestimulation of EPCs with HMGB1 increased the homing of EPCs to ischemic muscles. In conclusion, these data represent a link between HMGB1 and integrin functions of EPCs and demonstrate that HMGB1 stimulates EPC homing to ischemic tissues. These results may provide a platform for the development of novel therapeutic approaches to improve EPC homing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available