4.7 Article

Human vascular smooth muscle cells express functionally active endothelial cell protein C receptor

Journal

CIRCULATION RESEARCH
Volume 100, Issue 2, Pages 255-262

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000255685.06922.c7

Keywords

endothelial cell protein C receptor; activated protein C; vascular smooth muscle cells; intracellular signaling

Ask authors/readers for more resources

The endothelial cell protein C receptor ( EPCR) is expressed on endothelial cells and regulates the protein C anticoagulant pathway via the thrombin-thrombomodulin complex. Independent of its anticoagulant activity, activated protein C (APC) can directly signal to endothelial cells and upregulate antiapoptotic and antiinflammatory genes. Here we show that vascular smooth muscle cells (SMCs) also express EPCR. EPCR protein on SMCs was detected by flow cytometry and Western blotting. EPCR mRNA was identified by quantitative RT-PCR. To examine the functionality of EPCR, intracellular signaling in APC-stimulated SMCs was analyzed by determination of intracellular free calcium transients using confocal laser scanning microscopy. Phosphorylation of extracellular signal - regulated kinases 1 and 2 (ERK-1/2) was detected by immunoblotting. APC-induced ERK-1/2 phosphorylation was inhibited by an anti-EPCR antibody and by a cleavage site blocking anti-PAR-1 antibody, indicating that binding of APC to EPCR and cleavage of protease-activated receptor-1 (PAR-1) were involved. APC elicited an increase in [H-3]-thymidine incorporation. The mitogenic effect of APC was significantly enhanced in the presence of thrombin. EPCR expression was also detected in SMCs in the fibrous cap of human carotid artery plaques. The present data demonstrate functionally active EPCR in SMCs and suggest that EPCR-bound APC might modulate PAR-1-mediated responses of SMCs to vascular injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available