4.7 Article

Quantum-classical description of the amide I vibrational spectrum of trialanine

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 5, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2431803

Keywords

-

Ask authors/readers for more resources

A quantum-classical description of the amide I vibrational spectrum of trialanine cation in D2O is given that combines (i) a classical molecular dynamics simulation of the conformational distribution of the system, (ii) comprehensive density functional theory calculations of the conformation-dependent and solvent-induced frequency fluctuations, and (iii) a semiclassical description of the vibrational line shapes which includes nonadiabatic transitions between vibrational eigenstates. Various assumptions that are usually employed in the calculation of condensed-phase vibrational spectra are tested, including the adiabatic, the Franck-Condon, and the second-order cumulant approximations, respectively. All three parts of the theoretical formulation are shown to have a significant impact on the simulated spectrum, suggesting that the interpretation of peptide amide I spectra may require substantial theoretical support. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available