4.8 Article

Balancing BMP signaling through integrated inputs into the Smad1 linker

Journal

MOLECULAR CELL
Volume 25, Issue 3, Pages 441-454

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2007.01.006

Keywords

-

Funding

  1. NCI NIH HHS [CA34610] Funding Source: Medline
  2. NICHD NIH HHS [HD32105] Funding Source: Medline

Ask authors/readers for more resources

FGF and other Ras/MAPK pathway activators counterbalance BMP action during neurogenesis, bone formation, and other aspects of vertebrate development and homeostasis. BMP receptors signal through C-terminal phosphorylation and nuclear translocation of the transcription factor Smad1, whereas MAPKs catalyze inhibitory phosphorylation in the Smad1 linker region. Here we show that linker phosphorylation restricts Smad1 activity by enabling Smad1 recognition by the HECT-domain ubiquitin ligase Smurf1. Besides causing Smad1 polyubiquitination, Smurf1 binding inhibits the interaction of Smad1 with the nuclear translocation factor Nup214. Consequently, MAPK-dependent Smurf1 binding leads Smad1 alternatively to degradation or cytoplasmic retention. Smad1 linker phosphorylation and Smurf1 act as interdependent inputs to control BMP signaling during mouse osteoblast differentiation and Xenopus neural development. Linker phosphorylation is triggered also by BMP, providing feedback control. The interplay between linker phosphorylation, Smurf-dependent ubiquitination, and nucleoporin exclusion enables regulation of BMP action by diverse signals and biological contexts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available