4.5 Article

Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006JG000210

Keywords

-

Ask authors/readers for more resources

This study examined daily, seasonal, and interannual variations in CH4 emissions at a temperate peatland over a 5-year period. We measured net ecosystem CO2 exchange ( NEE), CH4 flux, water table depth, peat temperature, and meteorological parameters weekly from the summers ( 1 May to 31 August) of 2000 through 2004 at Sallie's Fen in southeastern New Hampshire, United States. Significant interannual differences, driven by high variability of large individual CH4 fluxes ( ranging from 8.7 to 3833.1 mg CH4 m(-2) d(-1)) occurring in the late summer, corresponded with a decline in water table level and an increase in air and peat temperature. Monthly timescale yielded the strongest correlations between CH4 fluxes and peat and air temperature (r(2) = 0.78 and 0.74, respectively) and water table depth (WTD) (r(2) = 0.53). Compared to daily and seasonal timescales, the monthly timescale was the best timescale to predict CH4 fluxes using a stepwise multiple regression (r(2) = 0.81). Species composition affected relationships between CH4 fluxes and measures of plant productivity, with sedge collars showing the strongest relationships between CH4 flux, water table, and temperature. Air temperature was the only variable that was strongly correlated with CH4 flux at all timescales, while WTD had either a positive or negative correlation depending on timescale and vegetation type. The timescale dependence of controls on CH4 fluxes has important implications for modeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available