4.8 Article

Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings

Journal

JOURNAL OF POWER SOURCES
Volume 164, Issue 2, Pages 578-589

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2006.08.013

Keywords

protective coatings; chromium vaporization; poisoning; degradation

Ask authors/readers for more resources

The vaporization of Cr-rich volatile species from interconnector materials is a major source of degradation that limits the lifetime of planar SOFC systems with metallic interconnects. In this study, the vaporization of Cr species of a variety high chromium alloys was studied at 800 degrees C in air using the transpiration method. The measured release of Cr species of the different alloys was correlated with the formed outer oxide scales. A quantitative estimation showed that all the investigated alloys failed to meet the requirements concerning the Cr release from interconnector materials for SOFCs or formed oxide scales which possessed too high electrical resistances. Sputtered ceramic coatings of LSM and LSC and metallic coatings of Co, Ni and Cu were tested with regard to their suitability for Cr retention. The sputtered perovskite coatings turned out to be ineffective in reducing the Cr release to the desired levels. With metallic coatings of Co, Ni or Cu the Cr release could be reduced by more than 99%. The metallic coatings and their oxides effectively reduced the growth of the oxide scale on the steel substrate and showed negligible vaporization rates for Co, Cu and Ni, respectively. Therefore, Co, Ni or Cu were identified as promising and cheap coating materials for metallic interconnectors. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available