4.5 Article

Rod and cone input to horizontal cells in the rabbit retina

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 500, Issue 5, Pages 815-831

Publisher

WILEY
DOI: 10.1002/cne.21127

Keywords

AMPA receptors; horizontal cells; retina; rod spherude; axonal terminal

Funding

  1. NEI NIH HHS [EY 06515, EY 10608] Funding Source: Medline

Ask authors/readers for more resources

In the rabbit retina, there are two types of horizontal cell (HC). The A-type HC is axonless and extensively coupled. The B-type HC is axon bearing; the somatic dendrites are radially symmetric and form a second coupled network, while the axon branches expansively to form a complex terminal structure. The B-type axon terminals (ATs) are independently coupled to form a third network in the outer plexiform layer. We have modified our dye-injection methods to obtain detailed fills of the three different horizontal cell networks for analysis via confocal microscopy. We have confirmed that A-type HCs and the somatic dendrites of B-type HCs receive input exclusively from cones, whereas the B-type ATs receive input only from rods. A single B-type AT may receive input from as many as 1,000 rods, but, surprisingly, our data reveal only one end terminal per rod spherule. The somatic dendrites of A- and B-type HCs form clusters at each cone pedicle coincident with GluR2/3 and GluR4 glutamate receptor subunits. The B-type ATs have GluR2/3- or GluR4-labeled glutamate receptors in two locations: small puncta on the end terminals within the rod spherule invagination and large clusters on the terminal stalks, approximately 1.5 mu m from the rod synaptic ribbon. We conclude that AMPA receptors of the same or similar composition mediate photoreceptor input to all types of HCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available