4.7 Article

Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 221, Issue 2, Pages 693-723

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2006.06.043

Keywords

WENO reconstruction; ADER approach; finite volume schemes; unstructured meshes in two and three space dimensions; linear hyperbolic systems

Ask authors/readers for more resources

In this article we present a non-oscillatory finite volume scheme of arbitrary accuracy in space and time for solving linear hyperbolic systems on unstructured grids in two and three space dimensions using the ADER approach. The key point is a new reconstruction operator that makes use of techniques developed originally in the discontinuous Galerkin finite element framework. First, we use a hierarchical orthogonal basis to perform reconstruction. Second, reconstruction is not done in physical coordinates, but in a reference coordinate system which eliminates scaling effects and thus avoids ill-conditioned reconstruction matrices. In order to achieve non-oscillatory properties, we propose a new WENO reconstruction technique that does not reconstruct point-values but entire polynomials which can easily be evaluated and differentiated at any point. We show that due to the special reconstruction the WENO oscillation indicator can be computed in a mesh-independent manner by a simple quadratic functional. Our WENO scheme does not suffer from the problem of negative weights as previously described in the literature, since the linear weights are not used to increase accuracy. Accuracy is obtained by merely putting a large linear weight on the central stencil. The resulting one-step ADER finite volume scheme obtained in this way performs only one nonlinear WENO reconstruction per element and time step and thus can be implemented very efficiently even for unstructured grids in three space dimensions. We show convergence results obtained with the proposed method up to sixth order in space and time on unstructured triangular and tetrahedral grids in two and three space dimensions, respectively. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available