4.5 Article

Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice

Journal

HUMAN MOLECULAR GENETICS
Volume 16, Issue 4, Pages 431-444

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddl477

Keywords

-

Funding

  1. Telethon [GGP05284] Funding Source: Medline

Ask authors/readers for more resources

Leigh syndrome associated with cytochrome c oxidase (COX) deficiency is a mitochondrial disorder usually caused by mutations of SURF1, a gene encoding a putative COX assembly factor. We present here a Surf1-/- recombinant mouse obtained by inserting a loxP sequence in the open reading frame of the gene. The frequency of -/-, +/+ and +/- genotypes in newborn mice followed a mendelian distribution, indicating that the ablation of Surf1 is compatible with postnatal survival. The biochemical and assembly COX defect was present in Surf1(loxP)-/- mice, but milder than in humans. Surprisingly, not only these animals failed to show spontaneous neurodegeneration at any age, but they also displayed markedly prolonged lifespan, and complete protection from Ca2+-dependent neurotoxicity induced by kainic acid. Experiments on primary neuronal cultures showed markedly reduced rise of cytosolic and mitochondrial Ca2+ in Surf1(loxP)-/- neurons, and reduced mortality, compared to controls. The mitochondrial membrane potential was unchanged in KO versus wild-type neurons, suggesting that the effects of the ablation of Surf1 on Ca2+ homeostasis, and possibly on longevity, may be independent, at least in part, from those on COX assembly and mitochondrial bioenergetics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available