4.6 Article

A Probabilistic model for cell cycle distributions in synchrony experiments

Journal

CELL CYCLE
Volume 6, Issue 4, Pages 478-488

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.6.4.3859

Keywords

synchrony; cell cycle; population distribution; probabilistic model

Categories

Ask authors/readers for more resources

Synchronized populations of cells are often used to study dynamic processes during the cell division cycle. However, the analysis of time series measurements made on synchronized populations is confounded by the fact that populations lose synchrony over time. Time series measurements are thus averages over a population distribution that is broadening over time. Moreover, direct comparison of measurements taken from multiple synchrony experiments is difficult, as the kinetics of progression during the time series are rarely comparable. Here, we present a flexible mathematical model that describes the dynamics of population distributions resulting from synchrony loss over time. The model was developed using S. cerevisiae, but we show that it can be easily adapted to predict distributions in other organisms. We demonstrate that the model reliably fits data collected from populations synchronized by multiple techniques, and can accurately predict cell cycle distributions as measured by other experimental assays. To indicate its broad applicability, we show that the model can be used to compare global periodic transcription data sets from different organisms: S. cerevisiae and S. pombe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available