4.7 Article

Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China

Journal

JOURNAL OF HYDROLOGY
Volume 333, Issue 2-4, Pages 265-274

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2006.08.010

Keywords

annual maximum streamflow; El Nino/Southern Oscillation (ENSO); wavelet approach; Yangtze River basin

Ask authors/readers for more resources

Variability and possible teleconnections between annual maximum streamflow from the lower, the middle and the upper Yangtze River basin and Et Nino/Southern Oscillation (ENSO) are detected by continuous wavelet transform (CWT), cross-wavelet and wavelet coherence methods. The results show that: (1) different phase relations are found between annual maximum streamflow of the Yangtze River and El Nino/Southern Oscillation (ENSO) in the lower, the middle and the upper Yangtze River basin. In-phase relations are detected between annual maximum streamflow of the lower Yangtze River and anti-phase relations are found in the upper Yangtze River. But ambiguous phase relations occur in the middle Yangtze River, showing that the middle Yangtze River basin is a transition zone. Different climatic systems control the upper and the lower Yangtze River. The upper Yangtze River is mainly influenced by the Indian summer monsoon and the lower Yangtze is mainly influenced by the East Asian summer monsoon; (2) as for the individual stations, different phase relations are found in the longer and the shorter periods, respectively. In the longer periods, the annual maximum streamflow is more influenced by climatic variabilities, white in the shorter periods, it is influenced by other factors, e.g. human activities. The results of the study provide valuable information for improving the long-term forecasting of the streamflow using its relationship with ENSO and the Indian Monsoon. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available