4.8 Article

Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.077603

Keywords

-

Ask authors/readers for more resources

Phase transformation in finite-size ferroelectrics is of fundamental relevance for understanding collective behaviors and balance of competing interactions in low-dimensional systems. We report a first-principles effective Hamiltonian study of vortex-to-polarization transformation in Pb(Zr0.5Ti0.5)O-3 nanoparticles, caused by homogeneous electric fields normal to the vortex plane. The transformation is shown to (1) follow an unusual macroscopic path that is symmetry nonconforming and characterized by the occurrence of a previously unknown structure as the bridging phase, and (2) lead to the discovery of a striking collective phenomenon, revealing how ferroelectric vortex is annihilated microscopically. Interactions underlying these behaviors are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available