4.3 Article

Effects of topological defects and local curvature on the electronic properties of planar graphene

Journal

NUCLEAR PHYSICS B
Volume 763, Issue 3, Pages 293-308

Publisher

ELSEVIER
DOI: 10.1016/j.nuclphysb.2006.10.031

Keywords

-

Ask authors/readers for more resources

A formalism is proposed to study the electronic and transport properties of graphene sheets with corrugations as the one recently synthesized. The formalism is based on coupling the Dirac equation that models the low energy electronic excitations of clean flat graphene samples to a curved space. A cosmic string analogy allows to treat an arbitrary number of topological defects located at arbitrary positions on the graphene plane. The usual defects that will always be present in any graphene sample as pentagon-heptagon pairs and Stone-Wales defects are studied as an example. The local density of states around the defects acquires characteristic modulations that could be observed in scanning tunnel and transmission electron microscopy. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available