4.4 Article

A dimerization hierarchy in the transmembrane domains of the HER receptor family

Journal

BIOCHEMISTRY
Volume 46, Issue 7, Pages 2010-2019

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi061436f

Keywords

-

Ask authors/readers for more resources

Bitopic membrane proteins offer an opportunity for studying transmembrane domain interactions without the structural complexity inherent to multitopic integral membrane proteins. To date, only homomeric associations have been extensively studied quantitatively. Here we propose to assess the thermodynamics of heteromeric associations, which opens the way to investigating specificity and selectivity. A very interesting system of biological relevance with single transmembrane domains possibly involved in interactions with different partners is the EGFR receptor family. The four members, all tyrosine kinase receptors, are involved in an interaction network that potentially leads to a complete set of homo- and heterodimers, ideally suited to such a study. Furthermore, the transmembrane domains of these receptors have been previously implicated in their function in the past by mutations in the transmembrane domain leading to constitutive activation. We demonstrate, using a fluorescence-based measurement of interaction energies, a hierarchy of transmembrane domain interactions ranging from a noninteractive pair to strong dimerization. We propose a structural model based on the crystal structure of the EGFR dimer, to show how the dimeric structure favors these interactions. The correlation we observe between transmembrane domain and whole receptor interaction hierarchies opens a new perspective, suggesting a role for transmembrane receptor domains in the modulation of receptor signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available