4.6 Article

Controllable coupling between flux qubit and nanomechanical resonator by magnetic field

Journal

NEW JOURNAL OF PHYSICS
Volume 9, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/9/2/035

Keywords

-

Ask authors/readers for more resources

We propose an active mechanism for coupling the quantized mode of a nanomechanical resonator to the persistent current in the loop of a superconducting Josephson junction (or phase slip) flux qubit. This coupling is independently controlled by an external coupling magnetic field. The whole system forms a novel solid-state cavity quantum electrodynamics (QED) architecture in the strong coupling limit. This architecture can be used to demonstrate quantum optics phenomena and coherently manipulate the qubit for quantum information processing. The coupling mechanism is applicable for more generalized situations where the superconducting Josephson junction system is a multi-level system. We also address the practical issues concerning experimental realization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available