4.8 Article

Fluorescent biomembrane probe for ratiometric detection of apoptosis

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 129, Issue 7, Pages 2187-2193

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja068008h

Keywords

-

Ask authors/readers for more resources

Herein, we developed the first ratiometric fluorescent probe for apoptosis detection. This probe incorporates selectively into the outer leaflet of the cell plasma membrane and senses the loss of the plasma membrane asymmetry occurring during the early steps of apoptosis. The high specificity to the plasma membranes was achieved by introduction into the probe of a membrane anchor, composed of a zwitterionic group and a long (dodecyl) hydrophobic tail. The fluorescence reporter of this probe is 4'-(diethylamino)-3-hydroxyflavone, which exhibits excited-state intramolecular proton transfer (ESIPT), resulting in two-band emission highly sensitive to the lipid composition of the biomembranes. Fluorescence spectroscopy, flow cytometry, and microscopy measurements show that the ratio of the two emission bands of the probe changes dramatically in response to apoptosis. This response reflects the changes in the lipid composition of the outer leaflet of the cell plasma membrane because of the exposure of the anionic phospholipids from the inner leaflet at the early steps of apoptosis. Being ratiometric, the response of the new probe can be easily quantified on an absolute scale. This allows monitoring by laser scanning confocal microscopy the degree and spatial distribution of the apoptotic changes at the cell plasma membranes, a feature that can be hardly achieved with the commonly used fluorescently labeled annexin V assay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available