4.7 Article

Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 8, Pages 2081-2090

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5577-06.2007

Keywords

apoptosis; autophagic stress; autophagy; cathepsin D; Bax; neurodegeneration

Categories

Funding

  1. NINDS NIH HHS [NS41962, NS57098, NS47466, NS35107] Funding Source: Medline

Ask authors/readers for more resources

Neuronal ceroid lipofuscinosces/ Batten disease ( NCL) is a devastating group of neurodegenerative diseases caused by genetic disruptions in lysosomal function. Cathepsin D ( CD) is a major lysosomal protease, and mutations in CD that render it enzymatically defective have been reported recently in subsets ofNCLpatients. The targeted deletion of CD in mice results in extensive neuropathology, including biochemical and morphological evidence of apoptosis and autophagic stress ( aberrant autophagosome accumulation), effects that are similar to those observed in NCL. To determine the contribution of Bax- dependent apoptosis in this mouse model of NCL, combined Baxand CD- deficient mice were generated. Morphological analysis of CD- deficient mouse brains indicated large numbers of pyknotic neurons and neurons with marked cytoplasmic swellings containing undigested lipofuscin. Cell death and apoptosis were evidenced by increases in terminal deoxynucleotidyl transferase- mediated biotinylated UTP nick end labeling ( TUNEL) reactivity and activation of caspase- 3, respectively. DeOlmos silver-positive neurons were abundant in CD- deficient brain and correlated with neuron loss, as indicated by significant decreases in NeuN ( neuronal nuclear antigen)-positive neurons. Lysosome dysfunction and autophagic stress were apparent in CD- deficient brain as indicated by the accumulation of autofluorescent storage material and by increased levels of LC3-II ( light chain 3-II, a selective autophagosome marker), respectively. Bax deletion significantly inhibited caspase- 3 activation and hippocampal TUNEL reactivity but did not prevent the majority of CD deficiency- induced neuropathology, including the persistence of pyknotic neurons, elevated cortical TUNEL reactivity, lysosome dysfunction and autophagic stress, neurodegeneration, and neuron loss. Together, these results suggest thatCDdeficiency- induced neuropathology does not require Bax- dependent apoptosis and highlights the importance of caspase- independent neuron death and neurodegeneration resulting from the genetic disruption of lysosome function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available