4.6 Article

A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces

Journal

LANGMUIR
Volume 23, Issue 5, Pages 2300-2303

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la063230l

Keywords

-

Ask authors/readers for more resources

Superhydrophobic surfaces are biomimetic structures with potential applications in several key technological areas. In the past decade, several top-down and bottom-up fabrication methods have been developed to create such surfaces. These typically combine a hierarchical structure and low surface energy coatings to increase the contact angle and decrease the rolling angles. Silicon-based superhydrophobic surfaces are particularly attractive since they can be integrated with active electronics in order to protect them from the detrimental effects of environmental water and moisture. In this work, we introduce a simple and inexpensive process incorporating electrochemical surface modification (to create a fractal shape micro-nano topography) in combination with a final wet etching step to fabricate a superhydrophobic silicon surface with a contact angle of 160 degrees and a sliding angle of less than 1 degrees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available