4.6 Article

Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals

Journal

LANGMUIR
Volume 23, Issue 5, Pages 2892-2897

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la062592q

Keywords

-

Ask authors/readers for more resources

Ordered ZnS-based colloidal crystals from homogeneous, core-shell, and hollow building blocks were prepared via electrosteric colloid stabilization combined with a convective assembly technique. The polyelectrolyte stabilized colloids assembled into face-centered cubic arrays with the (111) face perpendicular to the substrate. Structure-property correlations were made using scanning electron microscopy, scanning transmission electron microscopy, and UV/visible/near-IR spectroscopy. Multilayer film growth, with film thickness of several micrometers, was achieved. Optical spectra showed (111) stopgaps along with pronounced higher order peaks. The spectral position of the photonic stopgap can be predicted using a volume average refractive index and the Maxwell-Garnett formula for the homogeneous and core-shell particles, respectively. This work holds the promise of harnessing ZnS for optical property engineering and enhanced photonic band gap materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available