4.8 Article

Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans

Journal

JOURNAL OF CLINICAL INVESTIGATION
Volume 117, Issue 3, Pages 794-802

Publisher

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI30006

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI049371, R01 AI045995, AI47087, AI49371, AI45995] Funding Source: Medline

Ask authors/readers for more resources

The study of regulatory networks in human pathogens such as Cryptococcus neoformans provides insights into host-pathogen interactions that may allow for correlation of gene expression patterns with clinical outcomes. In the present study, deletion of the cryptococcal copper-dependent transcription factor 1 (Cuf1) led to defects in growth and virulence factor expression in low copper conditions. In mouse models, cuf1 Delta strains exhibited reduced dissemination to the brain, but no change in lung growth, suggesting copper is limiting in neurologic infections. To examine this further, a biologic probe of available copper was constructed using the cryptococcal CUF1-dependent copper transporter, CTR4. Fungal cells demonstrated high CTR4 expression levels after phagocytosis by macrophage-like J774.16 cells and during infection of mouse brains, but not lungs, consistent with limited copper availability during neurologic infection. This was extended to human brain infections by demonstrating CTR4 expression during C neoformans infection of an AIDS patient. Moreover, high CTR4 expression by cryptococcal strains from 24 solid organ transplant patients was associated with dissemination to the CNS. Our results suggest that copper acquisition plays a central role in fungal pathogenesis during neurologic infection and that measurement of stable traits such as CTR4 expression may be useful for risk stratification of individuals with cryptococcosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available