4.5 Article

Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhone River

Journal

OECOLOGIA
Volume 151, Issue 3, Pages 544-559

Publisher

SPRINGER
DOI: 10.1007/s00442-006-0655-1

Keywords

climate change; disturbances; heatwave; regime shift; ordination techniques

Categories

Ask authors/readers for more resources

We assessed the temporal changes in and the relationships between the structures of the macroinvertebrate communities and the environmental conditions of the French Rhone River (the river from Lake Geneva to the Mediterranean Sea) over the last 20 years (1985-2004). Multisite environmental and biological datasets were analysed using multiple CO-inertia analysis (MCOA) and Procrustean analysis. Changes in environmental conditions were mainly marked by an improvement in water quality between 1985 and 1991 and by an increase in water temperature from 1985 onwards due to climate change. Improvement in water quality seemed to delay changes in community structures under global warming. We then observed trends in community structures coupled with high temperatures and a decrease in oxygen content. Interestingly, we observed both gradual changes and rapid switches in community states. These shifts seemed coupled to extreme hydroclimatic events (i.e. pulse disturbances). Floods and the 2003 heatwave enhanced the development of eurytolerant and invasive taxa which were probably able to take advantage of gradual warming environmental conditions. Despite various site-specific press constraints (e.g. hydropower schemes, nuclear power plants), similar changes in community structures were observed along the French Rhone River. Such consistency in temporal processes at large geographical scales underlined the strength of hydroclimatic constraints on community dynamics compared to specific local disturbances. Finally, community structures did not show any sign of recovery, and their relative sensitivities to extreme hydroclimatic events seemed to increase with time. Thus, our results suggest that global changes may reduce the resilience of current community states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available