4.6 Article

Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition

Journal

HYDROBIOLOGIA
Volume 579, Issue -, Pages 95-113

Publisher

SPRINGER
DOI: 10.1007/s10750-006-0387-6

Keywords

dissolved organic matter; DOC; Cu; bioavailability; photooxidation; biotic ligand model

Ask authors/readers for more resources

In natural waters, the uptake of transition metals such as copper (Cu) by aquatic biota depends on the activity of the free cupric ion ({Cu2+}) rather than on total Cu concentration. Thus, an important ecological function of dissolved organic matter (DOM) in aquatic ecosystems is Cu-DOM complexation, which greatly decreases the {Cu2+}. However, Cu bioavailability is greatly modified by source and environmental history of DOM because DOM affinity for Cu varies by orders of magnitude among DOM sources; moreover, DOM is photochemically unstable. During 72-h irradiation experiments at intensities approximating sunlight with DOM from a palustrine wetland and a third-order river, we investigated photooxidative effects on DOM complexation of Cu as well as spectral and chemical changes in DOM that might explain altered Cu complexation. Irradiation decreased Cu complexation by riverine DOM, but unexpectedly increased Cu complexation by wetland DOM, resulting in 150% greater {Cu2+} in riverine DOM at the same dissolved organic carbon concentrations. The specific ultraviolet absorption (SUVa) and humic substances tracked photochemical changes in the conditional stability constants of Cu-DOM complexes, suggesting that the aromaticity of DOM influences its affinity for Cu. Carbonyl concentration in C-13 nuclear magnetic resonance spectra (C-13-NMR) covaried directly with Cu binding-site densities in DOM. However, no aspect of Cu-DOM complexation consistently covaried with fluorophores (i.e., the fluorescence index) or low molecular weight organic acids. Our results suggest that global increases in UV radiation will affect Cu-DOM complexation and subsequent Cu toxicity depending on light regime as well as DOM source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available