4.7 Article

Activation of c-Jun NH2-terminal kinase (JNK) pathway during islet transplantation and prevention of islet graft loss by intraportal injection of JNK inhibitor

Journal

DIABETOLOGIA
Volume 50, Issue 3, Pages 612-619

Publisher

SPRINGER
DOI: 10.1007/s00125-006-0563-2

Keywords

cell-permeable peptide; islet transplantation; JNK inhibitory peptide; c-Jun NH2-terminal kinase

Ask authors/readers for more resources

Aims/hypothesis Although application of the Edmonton protocol has markedly improved the outcome for pancreatic islet transplantation, the insulin independence rate after islet transplantation from one donor pancreas has remained low. During the isolation process and subsequent clinical transplantation, islets are subjected to severe adverse conditions that impair survival and ultimately contribute to graft failure. The aim of this study was to map the c-Jun NH2-terminal kinase (JNK) pathway that mediates islet loss during islet transplantation and to clarify whether intraportal injection with JNK inhibitor during islet transplantation can prevent islet graft loss. Methods We measured JNK activity in the liver, fat and muscle of diabetic mice and in the liver immediately after islet transplantation. We examined the effect of intraportal injection of JNK inhibitory peptide at islet transplantation. Results JNK activity became progressively higher at least until 24 h after transplantation. The cell-permeable peptide of JNK inhibitor was delivered not only in the liver but also in other insulin target organs, preventing JNK activation in the liver at least until 24 h after transplantation and reducing JNK activity in these insulin target organs. Moreover, the peptide inhibitor prevented islet graft loss immediately after transplantation and improved islet transplant outcome. Conclusions/interpretation These findings suggest that control of the JNK pathway is extremely important in islet transplantation and that intraportal injection of JNK inhibitor during islet transplantation (addition of JNK inhibitor to transplant media) could prevent the impairment of islet cells, leading to improved outcome for pancreatic islet transplantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available