4.7 Article

High-temperature resistance fiber Bragg grating temperature sensor fabrication

Journal

IEEE SENSORS JOURNAL
Volume 7, Issue 3-4, Pages 586-591

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2007.891941

Keywords

fiber Bragg grating (FBG) temperature sensors; high-temperature resistance FBGs; molecular-water induced FBGs

Ask authors/readers for more resources

Fiber Bragg grating (FBG) temperature sensor and sensor arrays were applied widespread particularly in harsh environments. Although FBGs are often referring to permanent refractive index modulation in the fiber core, exposure to high-temperature environments usually results in the bleach of the refractive index modulation. The maximum temperature reported for the conventional FBG temperature sensor is around 600 degrees C due to its weak bonds of germanium and oxygen. In this paper, we report design and development of a novel high-temperature resistance FBG temperature sensor, based on the hydrogen-loaded germanium-doped FBG. The refractive index modulation in the FBG is induced by the molecular water. The results of our experiments have shown that the stability of the device is substantially increased at high temperature range. Due to the high bonds energy of hydroxyl and the low diffusivity of the molecular water, the thermal testing results of this temperature sensor show the thermal stability of hydrogen-loaded FBG can be increased by using annealing treatment; moreover, the highest erasing temperature for the device could reach to 1100 degrees C or more. The reflectivity of this new FBG depends on the concentration of Si-OH and indirectly related to the reflectivity of hydrogen-loaded FBG. Furthermore, the experimental results have provided a better understanding of the formation of the hydrogen-loaded FBGs and the chemical transfers at elevated temperatures in the fiber core.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available