4.7 Article

Synthesis of highly elastic biodegradable poly(urethane urea)

Journal

BIOMACROMOLECULES
Volume 8, Issue 3, Pages 905-911

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm061058u

Keywords

-

Ask authors/readers for more resources

Linear poly(urethane urea) containing a biodegradable soft segment and a hard segment built solely from methyl-2,6-diisocyanatehexanoate (LDI) is presented, using a procedure where no chain extender is required. By having LDI in excess, together with a soft segment, and adding water in the vapor phase continuously creates amines in situ resulting in hard segments containing multiple LDI units linked via urea linkages. As soft segments, polymers of trimethylene carbonate (TMC) and copolymers of TMC, epsilon-caprolactone, and D,L-lactic acid (DLLA) were used. High inherent viscosity, 0.95-1.65 dL/g, was afforded even when DLLA-containing soft segments were used, which usually undergo aminolysis. With a hard segment content between 12% and 18%, all of the materials showed very high elongation at breakage, ranging from 1600% to 4700%, and an elastic modulus from 2.1 to 140 MPa. This one-pot synthesis is simple and has now been shown to be applicable to a large number of systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available