4.4 Article

Cytoskeletal changes of mesenchymal stem cells during differentiation

Journal

ASAIO JOURNAL
Volume 53, Issue 2, Pages 219-228

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MAT.0b013e31802deb2d

Keywords

-

Funding

  1. NIBIB NIH HHS [R01 EB002332, EB02332] Funding Source: Medline
  2. NIDCR NIH HHS [RC2 DE020767, R01 DE015391, RC2 DE020767-02, DE15391] Funding Source: Medline

Ask authors/readers for more resources

Mesenchymal stem cells (MSCs) are progenitors for tissues such as bone and cartilage. In this report, the actin cytoskeleton and nanomechanobiology of human mesenchymal stem cells (hMSCs) were studied using fluorescence microscopy and atomic force microscopy (AFM). Human MSCs were differentiated into chondrocytes and osteoblasts as per previous approaches. Cytochalasin D (CytD) was used to temporarily disrupt cytoskeleton in hMSCs, hMSC-chondrocytes (hMSC-Cys) and hMSC-osteoblasts (hMSC-Obs). Fluorescence microscopy revealed a dose-dependent response to CytD. Removal of CytD from the media of cytoskeleton-disrupted cells led to the recovery of the cytoskeletal structures, as confirmed by both fluorescence microscopy and AFM. Force-volume imaging by AFM evaluated the nanomechanics of all three cell types before, during, and after CytD treatment. Cytochalasin D disruption of cytoskeleton had marked effects on hMSCs and hMSC-Cys, in comparison with limited cytoskeleton disruption in hMSC-Obs, as confirmed qualitatively by fluorescence microscopy and quantitatively by AFM. Treatment with CytD resulted in morphology changes of all cell types, with significant decreases in the observed Young's Moduli of hMSCs and hMSC-Cys. These data suggest human mesenchymal stem cells alter their cytoskeletal components during differentiation. Additional studies will address the mechanisms of cytoskeletal changes using biochemical and biophysical methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available