4.7 Article

Folding behavior of ribosomal protein S6 studied by modified G(o)over-bar-like model

Journal

PHYSICAL REVIEW E
Volume 75, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.75.031914

Keywords

-

Ask authors/readers for more resources

Recent experimental and theoretical studies suggest that, although topology is the determinant factor in protein folding, especially for small single-domain proteins, energetic factors also play an important role in the folding process. The ribosomal protein S6 has been subjected to intensive studies. A radical change of the transition state in its circular permutants has been observed, which is believed to be caused by a biased distribution of contact energies. Since the simplistic topology-only G (o) over bar -like model is not able to reproduce such an observation, we modify the model by introducing variable contact energies between residues based on their physicochemical properties. The modified G (o) over bar -like model can successfully reproduce the Phi-value distributions, folding nucleus, and folding pathways of both the wild-type and circular permutants of S6. Furthermore, by comparing the results of the modified and the simplistic models, we find that the hydrophobic effect constructs the major force that balances the loop entropies. This may indicate that nature maintains the folding cooperativity of this protein by carefully arranging the location of hydrophobic residues in the sequence. Our study reveals a strategy or mechanism used by nature to get out of the dilemma when the native structure, possibly required by biological function, conflicts with folding cooperativity. Finally, the possible relationship between such a design of nature and amyloidosis is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available