4.5 Article

A structure-based sliding-rebinding mechanism for catch bonds

Journal

BIOPHYSICAL JOURNAL
Volume 92, Issue 5, Pages 1471-1485

Publisher

CELL PRESS
DOI: 10.1529/biophysj.106.097048

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI044902, R21 AI044902, AI44902] Funding Source: Medline

Ask authors/readers for more resources

Catch bonds, whose lifetimes are prolonged by force, have been observed in selectin-ligand interactions and other systems. Several biophysical models have been proposed to explain this counterintuitive phenomenon, but none was based on the structure of the interacting molecules and the noncovalent interactions at the binding interface. Here we used molecular dynamics simulations to study changes in structure and atomic-level interactions during forced unbinding of P-selectin from P-selectin glycoprotein ligand-1. A mechanistic model for catch bonds was developed based on these observations. In the model, catch results from forced opening of an interdomain hinge that tilts the binding interface to allow two sides of the contact to slide against each other. Sliding promotes formation of new interactions and even rebinding to the original state, thereby slowing dissociation and prolonging bond lifetimes. Properties of this sliding-rebinding mechanism were explored using a pseudoatorn representation and Monte Carlo simulations. The model has been supported by its ability to fit experimental data and can be related to previously proposed two-pathway models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available