4.5 Article

Impacts of day versus night temperatures on spring wheat yields: A comparison of empirical and CERES model predictions in three locations

Journal

AGRONOMY JOURNAL
Volume 99, Issue 2, Pages 469-477

Publisher

AMER SOC AGRONOMY
DOI: 10.2134/agronj2006.0209

Keywords

-

Categories

Ask authors/readers for more resources

Trends in recent temperature observations and model projections of the future are characterized by greater warming of daily minimum (tmin) relative to maximum (tmax) temperatures. To aid understanding of how tmin and tmax differentially affect crop yields, we analyzed variations of regional spring wheat yields and temperatures for three irrigated sites in western North America that were characterized by low correlations between tmin and tmax. The crop model CERES-Wheat v3.5 was evaluated in each site and used to project future response to temperature changes. Train and tmax exhibited distinct historical correlations with yields, with CERES successfully capturing the observed relationships in each region. In the Yaqui Valley of Mexico, historical yields were strongly correlated with tmin but not tmax. However, CERES projections of response to increased tmin or tmax (holding other variables constant) were similar (similar to 6% degrees C-1), indicating that the apparent historical importance of tmin mainly results from covariation between temperatures and solar radiation and not greater direct effects of tmin on yields. In the San Luis-Mexicali Valley of Mexico and in the Imperial Valley of California, the opposite was observed: historical yield correlations with tmin and tmax were similar, but projected responses to tmax were roughly three times larger than train. The latter is explained by opposing effects of tmin and tmax on grain filling rates in CERES, with higher tmin increasing harvest indices. This model mechanism was not clearly supported by historical data and remains an area of uncertainty for projecting yield responses to climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available