4.1 Article

An approach to identify cold-induced low-abundant proteins in rice leaf

Journal

COMPTES RENDUS BIOLOGIES
Volume 330, Issue 3, Pages 215-225

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.crvi.2007.01.001

Keywords

abiotic stress; polyethylene glycol; proteomics; rice leaf

Categories

Ask authors/readers for more resources

A proteomic approach has been adopted to investigate the low-abundant proteins in rice leaf in response to cold stress. Rice seedlings were exposed to different temperatures, such as 5 or 10 degrees C, and samples were collected after different time course. To eliminate the high-abundant proteins in leaf tissues such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), proteins were fractionated by polyethylene glycol (PEG). The elimination of Rubisco from the protein samples was confirmed by Western blot analysis. The PEG fractionated protein samples were separated by 2-DE and visualized by silver or CBB staining. A total 12 up-regulated protein spots were identified using the analysis of MALDI-TOF mass spectrometry or ESI MS/MS. We identified some novel proteins such as cysteine proteinase, thioredoxin peroxidase, a RING zinc finger protein-like, drought-inducible late embryogenesis abundant, and a fibrillin-like protein that had not yet been reported in the earlier reports on cold proteomic analysis. The identification of some novel low-abundant proteins in response to cold stress may provide a new homeostasis to develop enhanced cold tolerance transgenic plants. Thus, we propose that a PEG fractionation system can be used as an influential protein extraction method from the leaf samples, which can lead to knowledge of the expression pattern of low-abundant proteins in response to various biotic or abiotic stresses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available