4.6 Article

Very low-frequency blood pressure variability depends on voltage-gated L-type Ca2+ channels in conscious rats

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00874.2006

Keywords

power spectral analysis; myogenic vascular function; nifedipine; autonomic nervous system; ganglionic blockade

Ask authors/readers for more resources

The mechanisms generating high-frequency (HF) and low-frequency (LF) blood pressure variability (BPV) are reasonably well understood. However, little is known about the origin of very low-frequency (VLF) BPV. We tested the hypothesis that VLF BPV is generated by L-type Ca2+ channel-dependent mechanisms. In conscious rats, arterial blood pressure was recorded during control conditions (n = 8) and ganglionic blockade (n = 7) while increasing doses (0.01-5.0 mg . 100 mu l(-1) . h(-1)) of the L-type Ca2+ channel blocker nifedipine were infused intravenously. VLF (0.02-0.2 Hz), LF (0.2-0.6 Hz), and HF (0.6-3.0 Hz) BPV were assessed by spectral analysis of systolic blood pressure. During control conditions, nifedipine caused dose-dependent declines in VLF and LF BPV, whereas HF BPV was not affected. At the highest dose of nifedipine, VLF BPV was reduced by 86% compared with baseline, indicating that VLF BPV is largely mediated by L-type Ca2+ channel-dependent mechanisms. VLF BPV appeared to be relatively more dependent on L-type Ca2+ channels than LF BPV because lower doses of nifedipine were required to significantly reduce VLF BPV than to reduce LF BPV. Ganglionic blockade markedly reduced VLF and LF BPV and abolished the nifedipine-induced dose-dependent declines in VLF and LF BPV, suggesting that VLF and LF BPV require sympathetic activity to be evident. In conclusion, VLF BPV is largely mediated by L-type Ca2+ channel-dependent mechanisms. We speculate that VLF BPV is generated by myogenic vascular responses to spontaneously occurring perturbations of blood pressure. Other factors, such as sympathetic nervous system activity, may elicit a permissive effect on VLF BPV by increasing vascular myogenic responsiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available