4.6 Article

Effect of rapeseed oil on the degradation of polycyclic aromatic hydrocarbons in soil by Rhodococcus wratislaviensis

Journal

INTERNATIONAL BIODETERIORATION & BIODEGRADATION
Volume 59, Issue 2, Pages 111-118

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ibiod.2006.08.004

Keywords

polycyclic aromatic hydrocarbons; rapeseed oil; Rhodococcus wratislaviensis; soil bioremediation

Ask authors/readers for more resources

The effect of rapeseed oil (0, 0.1 and 1% w/w) on the degradation of polycyclic aromatic hydrocarbons (PAH) by Rhodococcus wratislaviensis was studied in soils artificially contaminated with phenanthrene, anthracene, pyrene and benzo(a)pyrene (50 mg kg(-1) I each), during 49 days at 30 degrees C. Without or with 0.1% of rapeseed oil, R. wratislaviensis degraded > 90% of phenanthrene and anthracene in 14 days and mineralised approx. 23% of C-14-phenanthrene. The native microflora degraded pyrene (90% degradation; 75% mineralisation) and benzo(a)pyrene (30% degradation, no mineralisation). With 1% rapeseed oil, R. wratislaviensis degraded only 66% of the phenanthrene and mineralised 12.4%, and had no effect on other PAH, while degradation by the native microflora was inhibited. On the other hand, the addition of 1% oil promoted degradation of benzo(a)pyrene (75%) and anthracene (90%) and anthraquinone was produced at high concentrations and accumulated. Two distinct processes gave degradation of PAH, one biological and one abiotic. Biological processes mainly degraded phenanthrene and pyrene, either by R. wratislaviensis or by the indigenous microflora. Benzo(a)pyrene was degraded mainly by an abiotic process in the presence of 1% rapeseed oil. Anthracene was degraded by a combination of both processes. PAH are often found in contaminated soils and there is the need of developing techniques that can be applied in the remediation of these sites, where PAH, specially those with high molecular weight, pose health and environmental risks. There is a continuous search for efficient microorganisms able to degrade these pollutants and for methods to enhance their degradation and bioavailability, e.g. by the use of vegetable oils. This paper presents a novel process for the degradation of PAH by a combined biological/abiotic system. (c) 2006 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available