4.4 Article

fgf1 is required for normal differentiation of erythrocytes in zebrafish primitive hematopoiesis

Journal

DEVELOPMENTAL DYNAMICS
Volume 236, Issue 3, Pages 633-643

Publisher

WILEY
DOI: 10.1002/dvdy.21056

Keywords

zebrafish; fibroblast growth factor 1; MDS; AML; hematopoiesis; gata1; ikaros

Ask authors/readers for more resources

Hematopoiesis in vertebrate development involves an embryonic, primitive wave and a later, definitive wave in which embryonic blood cells are replaced with adult blood cells. We here show that zebrafish fgt1 is involved in vivo in primitive hematopoiesis. Fibroblast growth factor-1 (FGF1) morpholino knockdown leads to abnormal accumulation of blood cells in the posterior intermediate cell mass at 32 hr postfertilization. Expression of the erythroid markers gata1 and ika, normally diminishing in differentiating erythrocytes at this stage, is maintained at abnormally high levels in primitive blood cells. The onset of erythrocyte differentiation as assessed by o-dianisidine staining is severely delayed. Most fgf1 morphants later recover to wild-type appearance, and primitive erythrocytes eventually differentiate. Zebrafish fgf1 is syntenic to human FGF1, which maps to a critically deleted region in human del(5q) syndrome posing an increased risk of leukemia to patients. As its knockdown in zebrafish changes expression of gata1, a gene involved in hematopoietic stem cell decisions, FGF1 should be considered to play a role in the pathogenesis of del(5q) syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available