4.6 Article

Origin of the magnetization peak effect in the Nb3Sn superconductor

Journal

PHYSICAL REVIEW B
Volume 75, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.094503

Keywords

-

Ask authors/readers for more resources

We report a pronounced peak effect in the magnetization and the magnetocaloric coefficient in a single crystal of the superconductor Nb3Sn. As the origin of the magnetization peak effect in classical type-II superconductors is still strongly debated, we performed an investigation of its underlying thermodynamics. Calorimetric experiments performed during field sweeps at constant temperatures reveal that the sharp increase in the current density occurs concurrently with additional degrees of freedom in the specific heat due to thermal fluctuations and a liquid vortex phase. No latent heat due to a direct first-order melting of a Bragg glass phase into the liquid phase is found, which we take as evidence for an intermediate glass phase with enhanced flux pinning. The Bragg glass phase can, however, be restored by a small ac field. In this case, a first-order vortex melting transition with a clear hysteresis is found. In the absence of an ac field, the intermediate glass phase is located within the field range of this hysteresis. This indicates that the peak effect is associated with the metastability of an underlying first-order vortex melting transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available