3.9 Article

Functional genomics of the β-cell:: Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents

Journal

MOLECULAR ENDOCRINOLOGY
Volume 21, Issue 3, Pages 765-773

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2006-0411

Keywords

-

Funding

  1. NHGRI NIH HHS [HG2296] Funding Source: Medline
  2. NIDDK NIH HHS [P30-DK19525, DK56947, DK55342, DK22122, DK19525, T32 DK63688] Funding Source: Medline

Ask authors/readers for more resources

Recent advances in functional genomics afford the opportunity to interrogate the expression profiles of thousands of genes simultaneously and examine the function of these genes in a high-throughput manner. In this study, we describe a rational and efficient approach to identifying novel regulators of insulin secretion by the pancreatic beta-cell. Computational analysis of expression profiles of several mouse and cellular models of impaired insulin secretion identified 373 candidate genes involved in regulation of insulin secretion. Using RNA interference, we assessed the requirements of 10 of these candidates and identified four genes (40%) as being essential for normal insulin secretion. Among the genes identified was Hadhsc, which encodes short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD), an enzyme of mitochondrial beta-oxidation of fatty acids whose mutation results in congenital hyperinsulinism. RNA interference-mediated gene suppression of Hadhsc in insulinoma cells and primary rodent islets revealed enhanced basal but normal glucose-stimulated insulin secretion. This increase in basal insulin secretion was not attenuated by the opening of the K-ATP channel with diazoxide, suggesting that SCHAD regulates insulin secretion through a K-ATP channel-independent mechanism. Our results suggest a molecular explanation for the hyperinsulinemia hypoglycemic seen in patients with SCHAD deficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available