4.4 Article

Influence of X-ray diffraction sample preparation on quantitative mineralogy: Implications for chromate waste treatment

Journal

JOURNAL OF ENVIRONMENTAL QUALITY
Volume 36, Issue 2, Pages 487-497

Publisher

WILEY
DOI: 10.2134/jeq2006.0215

Keywords

-

Ask authors/readers for more resources

Powders of chromite ore processing residue (COPR) were mineralogically evaluated using quantitative X-ray powder diffraction (XRPD) to illustrate the impacts of sample preparation procedures. Chromite ore processing residue is strongly alkaline, reactive, contains minerals of varying hardness and absorption coefficients, and exhibits significant amorphicity. This poses a challenge to produce powders for XRPD analysis that are sufficiently fine and of uniform particle size while avoiding mineral reactions and overgrinding effects. Dry, hand pulverization to different grain sizes, and wet, mechanical pulverization (micromilling) using four milling liquids (cyclohexane, isopropanol, ethanol, and water), and variable milling durations (up to 15 min) were evaluated. Micromilling with a light, nonpolar, highly evaporative liquid such as cyclohexane with a milling time of 5 min mitigated systematic errors such as microabsorption and preferred orientation as it produced finer and more uniform particle size distributions than the hand-pulverized powders, while simultaneously affording the least time for sample preparation. Conversely, the use of water as milling liquid resulted in extensive hydration reactions during sample preparation, causing mischaracterization and significant underestimation of its reactive brownmillerite content, which can complicate the remediation design process for COPR. Hand pulverization emerged as a necessary complement to quantify Cr(VI)-containing, softer minerals destroyed during mechanical milling, the quantification of which has also important implications for COPR treatment design. The findings of this study may be applicable in a variety of geochemically complicated and reactive environmental media (metal-contaminated soils, stabilized/solidified media, inorganic waste), and points to the importance of the sample preparation method to obtain reliable quantitative XRPD results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available